APPLICATION OF THE STOCHASTIC EM METHOD TO LATENT REGRESSION MODELS
نویسندگان
چکیده
منابع مشابه
Application of the Stochastic EM Method to Latent Regression Models
The reporting methods used in large scale assessments such as the National Assessment of Educational Progress (NAEP) rely on a latent regression model. The first component of the model consists of a p-scale IRT measurement model that defines the response probabilities on a set of cognitive items in p scales depending on a p-dimensional latent trait variable θ = (θ1, . . . θp). In the second com...
متن کاملthe application of multivariate probit models for conditional claim-types (the case study of iranian car insurance industry)
هدف اصلی نرخ گذاری بیمه ای تعیین نرخ عادلانه و منطقی از دیدگاه بیمه گر و بیمه گذار است. تعین نرخ یکی از مهم ترین مسایلی است که شرکتهای بیمه با آن روبرو هستند، زیرا تعیین نرخ اصلی ترین عامل در رقابت بین شرکتها است. برای تعیین حق بیمه ابتدا می باید مقدار مورد انتظار ادعای خسارت برای هر قرارداد بیمه را برآورد کرد. روش عمومی مدل سازی خسارتهای عملیاتی در نظر گرفتن تواتر و شدت خسارتها می باشد. اگر شر...
15 صفحه اولStochastic Approximation Methods for Latent Regression Item Response Models
This paper presents an application of a stochastic approximation EM-algorithm using a Metropolis-Hastings sampler to estimate the parameters of an item response latent regression model. Latent regression models are extensions of item response theory (IRT) to a 2-level latent variable model in which covariates serve as predictors of the conditional distribution of ability. Applications for estim...
متن کاملApplication of DJ method to Ito stochastic differential equations
This paper develops iterative method described by [V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl. 316 (2006) 753-763] to solve Ito stochastic differential equations. The convergence of the method for Ito stochastic differential equations is assessed. To verify efficiency of method, some examples are ex...
متن کاملEM Optimization of Latent-Variable Density Models
There is currently considerable interest in developing general nonlinear density models based on latent, or hidden, variables. Such models have the ability to discover the presence of a relatively small number of underlying 'causes' which, acting in combination, give rise to the apparent complexity of the observed data set. Unfortunately, to train such models generally requires large computatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ETS Research Report Series
سال: 2004
ISSN: 2330-8516
DOI: 10.1002/j.2333-8504.2004.tb01961.x